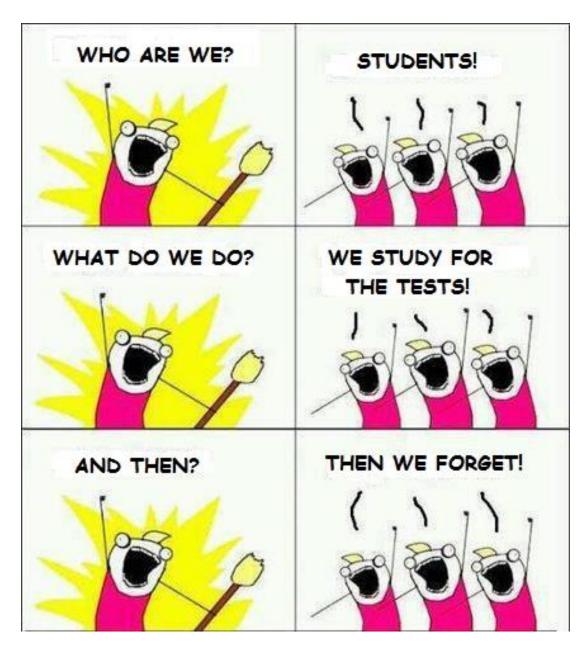
Adaptive assessment


Carlos F. Collares, M.D., M.Sc., Ph.D., FACMT

EDLAB Teach-Meet

April 13th, 2018

Maastricht University

Progress testing as an assessment strategy

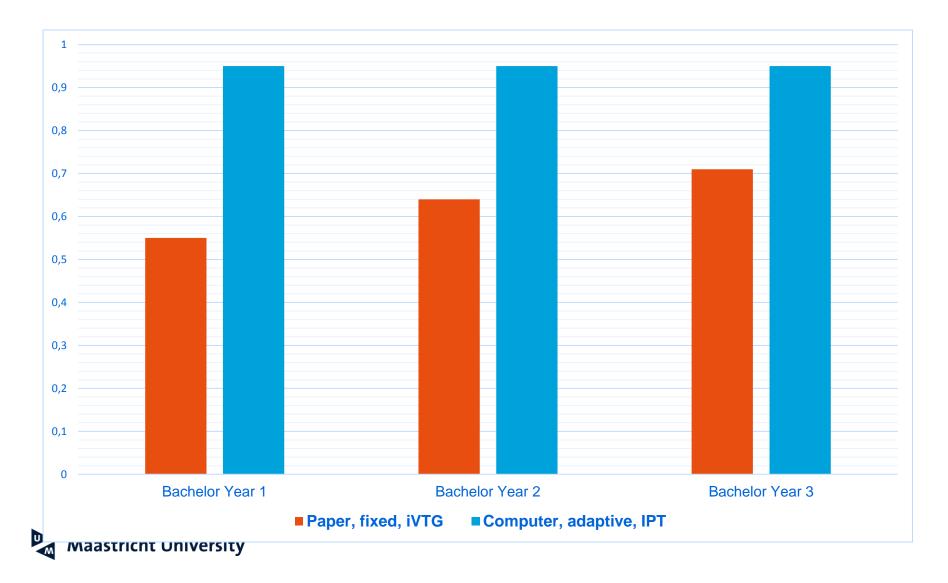
- Longitudinal assessment strategy.
- Systematic, repeated testing of all students of a school using the same test.
- Comprehensively covers all medical knowledge domains
- Can be administered from 2 to 4 times per year.
- Used by traditional, PBL and TBL schools.
- Used in undergraduate and postgraduate settings
- End-of-course level.
- MCQs
- Variable length and duration.

How is it with traditional, paper-based tests?

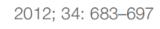
- All students answer the same set of questions
- Tests do not take into account the students' knowledge level
- Mismatch between test difficulty and knowledge levels may cause student demotivation, lower reliability and higher measurement error.
- Paper-based tests present less realistic challenges, as they do not allow test items to have pictures, audio and video, limiting the professional authenticity of the assessment.
- Paper-based tests also have more risk of breaches to test safety such as ilegal collusion.
- Re-testing (e.g. re-sits) might be burdensome when a new paper-base d test has to be created.

Computerized adaptive testing is an alternative

- CAT matches items' difficulty to students' ability
- An algorithm dynamically selects the difficulty of the next items based on students' performance in the previous answers.
- Instead of answering the same set of questions, each one of the test takers will receive an individually customized test, tailored to their level of knowledge
- CAT can reduce the length of the test by roughly 50%
- Potentially decreases student fatigue, while keeping or even enhancing reliability



What is reliability?


- The degree to which test scores for a group of test takers are consistent over repeated applications of a measurement procedure and hence are inferred to be dependable and consistent for an individual test taker; the degree to which scores are free of random errors of measurement for a given group" (AERA, APA, NCME, 2014)
- Total score variance = "true" variance + error variance
- $Reliability = \frac{"true" variance}{total variance}$
- In other words, it is a signal-to-noise ratio
- Values below 0,5 suggest that your test scores have more noise than signal.
- Values close to 1,0 indicate low levels of measurement error

Comparison of reliability estimates between a CAPT and a paper-based progress test

Reliability of paper-based progress tests

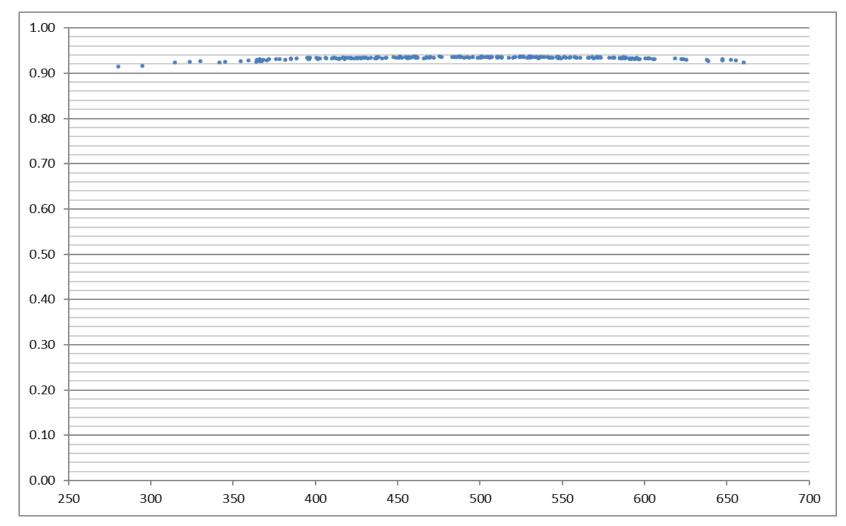
AMEE GUIDE

A systemic framework for the progress test: Strengths, constraints and issues: AMEE Guide No. 71

WILLIAM WRIGLEY, CEES PM VAN DER VLEUTEN, ADRIAN FREEMAN & ARNO MUIJTJENS Department of Educational Development and Research, The Netherlands

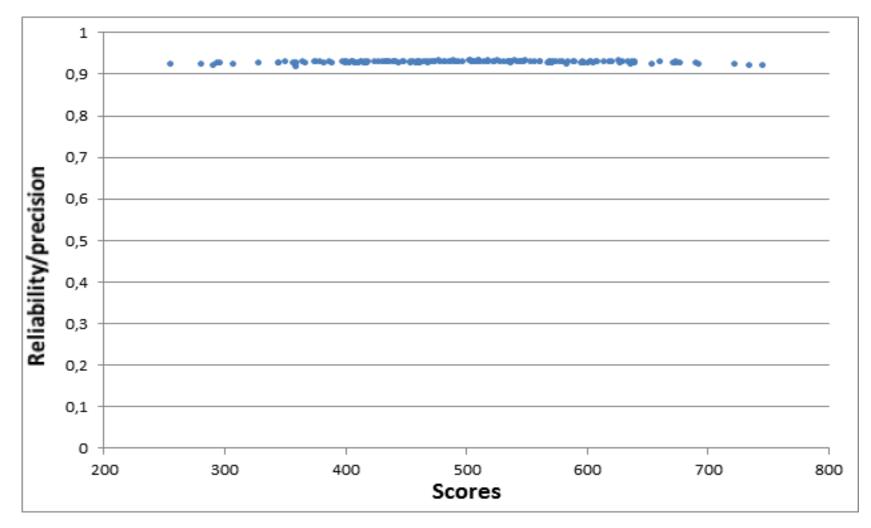
 Table 2. G coefficients for test size (number of items) by test frequency for Maastricht University students Years 1-6 in the academic year

 2010/11.


		Year 1					Year 2								
		Test size							Test size						
		25	50	75	100	150	200			25	50	75	100	150	200
Test Frequency	1 2 3 4	0.18 0.30 0.40 0.47	0.29 0.45 0.55 0.62	0.36 0.53 0.63 0.70 Y	0.42 0.59 0.68 0.74 Year 3	0.49 0.66 0.74 0.79	0.54 0.70 0.78 0.82	Test Frequency	1 2 3 4	0.23 0.38 0.48 0.55	0.37 0.54 0.63 0.70	0.45 0.62 0.71 0.77 Year 4	0.51 0.67 0.76 0.81	0.59 0.74 0.81 0.85	0.63 0.78 0.84 0.87
		Test size								Test size					
		25	50	75	100	150	200			25	50	75	100	150	200
Test Frequency	1 2 3 4	0.23 0.37 0.47 0.54	0.36 0.53 0.63 0.69	0.45 0.62 0.71 0.77 Y	0.51 0.68 0.76 0.81 ′ear 5	0.59 0.74 0.81 0.85	0.64 0.78 0.84 0.88	Test Frequency	1 2 3 4	0.32 0.49 0.59 0.66	0.48 0.65 0.74 0.79	0.57 0.73 0.80 0.84 Year 6	0.63 0.78 0.84 0.87	0.71 0.83 0.88 0.91	0.76 0.86 0.90 0.93
		Test size								Test size					
		25	50	75	100	150	200			25	50	75	100	150	200
Test Frequency	1 2 3 4	0.30 0.47 0.57 0.64	0.46 0.63 0.72 0.77	0.55 0.71 0.79 0.83	0.62 0.76 0.83 0.87	0.70 0.82 0.87 0.90	0.74 0.85 0.90 0.92	Test Frequency	1 2 3 4	0.30 0.46 0.56 0.63	0.45 0.62 0.71 0.77	0.55 0.71 0.78 0.83	0.61 0.76 0.82 0.86	0.69 0.82 0.87 0.90	0.74 0.85 0.89 0.92

Computerized adaptive testing is reliable

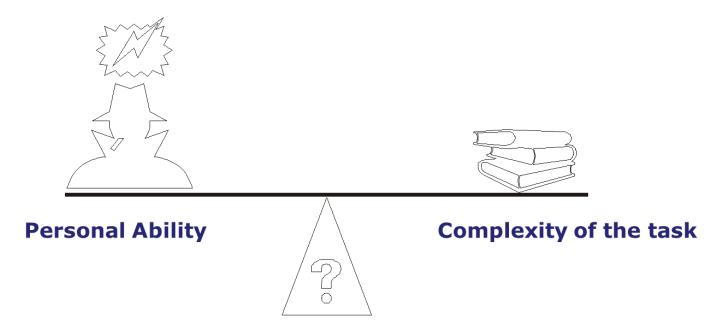
- Computerized adaptive progress tests (CAPTs) have been used in Brazil, Mexico, Finland and Georgia
- In all instances, CAPTs had formative purposes only.
- Maastricht University is a pioneer in the use of CAPTs for summative purposes
- Reliability > 0,90
- Test-retest reliability > 0,70
- Disattenuated correlation > 0,80



Individual reliability estimates of a CAPT in Helsinki, 2017

Maastricht University

Individual reliability estimates of a CAPT in Maastricht, 2017


Maastricht University

Proposition 1

- Computerized adaptive testing is an adequate tool for the assessment *of* learning.
- But how does adaptive testing work?
- Time for a technical intermezzo!

Each test item is a kind of "battle"

What is the probability that the person is "better" than the complexity of the task?

What is the probability that the person will win the "see-saw battle"?

There are mathematical models able to estimate the probability of who will win this battle

- The most robust model is was created by the Danish mathematician Georg Rasch in the 1960s.
- It establishes a formal relationship between the probability of success in the item, the difficulty of the item and the ability of the test taker.

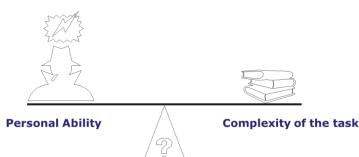
$$P(\boldsymbol{\theta}) = \frac{1}{1 + e^{-1(\boldsymbol{\theta} - b)}}$$

Translating the formula in plain words...

- The Rasch model takes the difficulty of the items into account to provide more accurate estimates of the ability levels of the test takers.
- This is not accomplished by classical scoring approaches.

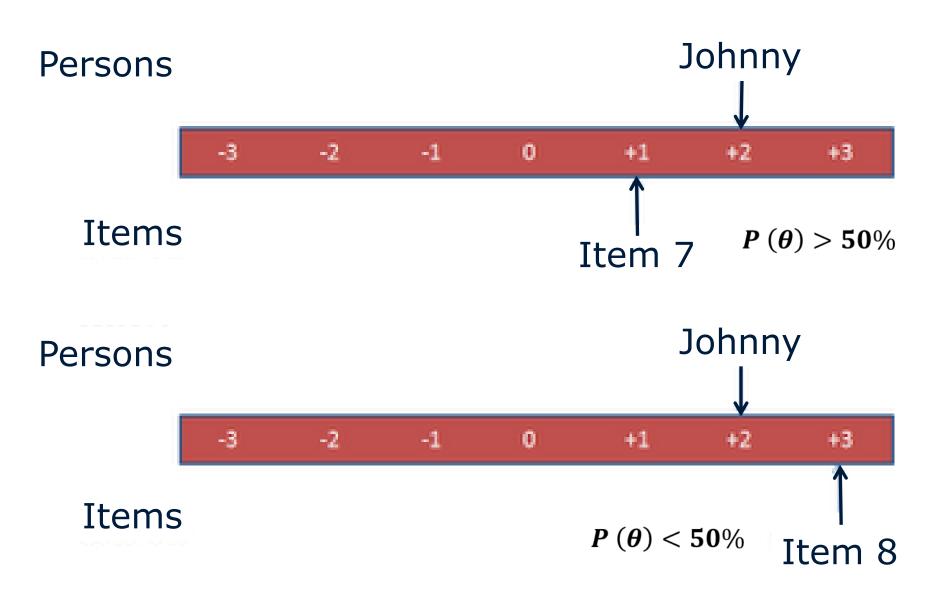
So what is the secret?

Will I be able to understand this Rasch model?


How does it work precisely?

ord	Item 1	Item 2	Item 3	Item 4	Item 5	Total		
1 Suj 2	1	1	1	1_	1	5	Soma	36
2 Suj 5	1	1	1	1	0	4	Média	2,57
3 Suj 1	1	1	1	1	1	5	Var	3,10
4 Suj 11	1	0	0	0	0	1	DP	1,76
5 Suj 3	1	1	1	1	0	4	Alfa	
6 Suj 13	0	0	0	0	0	0	N/N-1	1,08
7 Suj 10	1	0	0	0	0	1		
8 Suj 12	1	0	0	0	0	1	Alfa/KR	0,71
9 Suj 9	1	0	0	0	0	1		
10 Suj 7	1	1	1	0	0	3		
11 Suj 8	1	1	1	0	0	3		
12 Suj 4	1	1	1	1	0	4		
12 Suj 14	0	0	0	0	0	0		
13 Suj 6	1	1	1	1	0	4		
ID	0,86	0,57	0,57	0,43	0,14	2,57		
Corr It-Tot	0,60	0,94	0,94	0,87	0,56	1,00		
Desv. Padr	0,35	0,49	0,49	0,49	0,35	Soma:	2,18	
Var	0,13	0,26	0,26	0,26	0,13	Soma:	1,05	
	Item 1	tem 2 It	em 3 li	tem 4 l	tem 5			
Item 1	1,00							
Item 2	0,47	1,00						
Item 3	0,47	1,00	1,00					
Item 4	0,35	0,75	0,75	1,00				
Item 5	0,17	0,35	0,35	0,47	1,00			
	0,11	0,00	0,00	0,11	.,50			

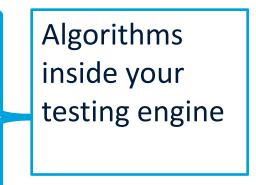
	Item 1	Item 2	Item 3	Item 4	ltem 5	Total		
Suj 1	1	1	1	1	1	Ę	Soma	36
Suj 2	1	1	1	1	1	5	Média	2,57
Suj 3	1	1	1	1	0	2	<mark>1</mark> Var	3,10
Suj 4	1	1	1	1	0	2	1 DP	1,76
Suj 5	1	1	1	1	0	2	<mark>1</mark> Alfa	
Suj 6	1	1	1	1	0	4	<mark>1</mark> N/N-1	1,08
Suj 7	1	1	1	0	0	3	3	
Suj 8	1	1	1	0	0	3	Alfa/KR	0,71
Suj 9	1	0	0	0	0		l	
Suj 10	1	0	0	0	0			
Suj 11	1	0	0	0	0		l	
Suj 12	1	0	0	0	0		l	
Suj 13	0	0	0	0	0	(
Suj 14	0	0	0	0	0	()	
ID	0,86	0,57	0,57	0,43	0,14	2,57	7	
Corr It-Tot	0,60	0,94	0,94	0,87	0,56	1,00)	
Desv. Padr	0,35	0,49	0,49	0,49	0,35	Soma:	2,18	
Var	0,13	0,26	0,26	0,26	0,13	Soma:	1,05	
	Item 1	tem 2 It	em 3 li	tem 4 l	tem 5			
Item 1	1,00					_		
Item 2	0,47	1,00						
Item 3	0,47	1,00	1,00					
Item 4	0,35	0,75	0,75	1,00				
ltem 5	0,17	0,35	0,35	0,47	1,00			


The secret of the Rasch model is that, through a series of successive attempts, it puts items' difficulties and students' knowledge levels in the same scale: the <u>theta scale</u>

Maastricht University

Item response theory models such as the Rasch model use the notion of a latent variable (not observed) from the observed behaviors (raw scores)

Psychological	Latent trait (<u>theta</u> , Θ)
Physical	Observed behavior (tau, τ)


CAT Components

- 1. Calibrated item bank
- 2. Starting rule
- 3. Item selection rule
- 4. Scoring rule
- 5. Stopping rule
- Given 1 and 2, we repeat 3 and 4 until 5 is satisfied
- All CAT follows this basic format we just modify the details for whatever testing situation we have

CAT Components

- 1. Calibrated item bank
- 2. Starting rule
- 3. Item selection rule
- 4. Scoring rule
- 5. Stopping rule

- Given 1 and 2, we repeat 3 and 4 until 5 is satisfied
- All CAT follows this basic format we just modify the details for whatever testing situation we have

Calibrated item bank

- Size of the item bank: commensurate to the test size (min: 1:7; ideal > 1:13)
- Test equating/linking
- Anchor persons/anchor items
- Concurrent calibration
- Sequential linking
- Choice of the model:
- Rasch/1PLM; 2PLM; 3PLM
- More parameters, more overexposure \rightarrow Rasch
- Non-IRT CAT (cognitive diagnostic modeling CAT) → future of adaptive testing

System options

- TestLife
- FastTest
- CONCERTO
- catR

End of technical intermezzo

Proposal 2

- Computerized adaptive testing is an excellent assessment tool *for* learning
- Alignment with learning theories
- Constructivism: "zone of proximal development"
- Cognitive load theory: the adaptive approach prevents cognitive under- and overload
- Social cognitive theory: better score accuracy leads to better self-regulation, self-efficacy and attainment

Proposal 3

- Computerized adaptive testing is an excellent assessment tool *as* learning
- Recent evidence demonstrates a positive impact of adaptive testing on students' achievement, motivation, engagement and subjective test experience

Journal of Educational Psychology 2018, Vol. 110, No. 1, 27-45 © 2017 American Psychological Association 0022-0663/18/\$12.00 http://dx.doi.org/10.1037/edu0000205

Computer-Adaptive Testing: Implications for Students' Achievement, Motivation, Engagement, and Subjective Test Experience

Andrew J. Martin University of New South Wales Goran Lazendic Australian Curriculum, Assessment, and Reporting Authority, Sydney, Australia

- 1) Public relations
 - Why certain things can happen, like failing after only a few questions
 - What are theta scores? What about the residues?
 - Educate staff, students, relatives, many times
 - Communication is a key element for success
- 2) Long-term Sustainability
 - Requires specially designed software, good network and hardware infrastructure.
 - Home-made solutions are a protection against absurd pricing changes, but may limit access to features of commercial systems

🗞 Maastricht University

• 3) Item Exposure

- Some items will be used far more often than others, depending on the level of the test takers and your distribution of item difficulties.
- 1PL has the same information for all items: less overexposure, but scores are also less predictive.
- 3PL: more predictive, but yields much more overexposure.
- Start including easier items NOW
- Start increasing scenario-based items NOW

- 4) "High maintenance"
 - Requires experts for IRT calibration and CAT simulation research
 - Content expertise to systematically discard items that are no longer updated to current scientific standards to keep the item bank clean
 - Even though some items may leak, periodic surveillance of item parameter drift may quickly identify possibly items destined to retirement.

• 5) Extra caution on content validity

- Requires much more refined blueprinting at the subscore level and subsequent algorithm specification to avoid exposing the student twice to a topic already covered in a previous item, or not exposing him at all to an important topic.
- 6) Use a representative sample to calibrate
 - If your items are calibrated in a small sample, from just a few institutions, your scores will likely have improperly high or low values when compared to the whole population of interest,

- 7) There is no such thing as a perfect world
 - Students like the overall CAT experience and if given the opportunity to choose between CAT and paper-based test, most of them prefer CAT (>70-80%), especially due to less fatigue and immediate score reporting, <u>BUT...</u>
 - Feedback to students becomes limited to subscore level and/or feedback prompts (rubrics) due to test safety. Items cannot be disclosed anymore.
 - Students cannot go back to review the answers.
 - The higher the stakes, the higher is the probability of items leaking

The adaptive approach maximizes test utility

- **Reliability** = homogeneously high, including early years
- Validity = potential construct-irrelevant variance is no longer an issue; content validity ensured by blueprint
- Educational impact = aligned to modern learning theories, recent evidence suggests positive impact especially for females and older students
- Acceptability = usually high (some students compare it to a video game) but depends on local context
- **Costs** = decreasing as more schools participate of the item bank construction

E-mail: c.collares@maastrichtuniversity.nl Twitter: @carlosfcollares

